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ABSTRACT: Pulmonary drug delivery is superior to the
systemic administration in treating lung diseases. An optimal
respiratory nanocarrier should be able to efficiently and safely
cross the pulmonary surfactant film, which serves as the first
biological barrier for respiratory delivery and plays paramount
roles in maintaining the proper mechanics of breathing. In this
work, we focused on the interactions between poly-
(amidoamine) (PAMAM) dendrimers and a model pulmo-
nary surfactant. With combined Langmuir monolayer experi-
ments and coarse-grained molecular dynamics simulations, we
studied the effect of environmental temperature, size, and
surface property of PAMAM dendrimers (G3-OH, G3-NH2,
G5-OH, and G5-NH2) on the dipalmitoylphosphatidylcholine (DPPC) monolayer. Our simulations indicated that the
environmental temperature could significantly affect the influence of PAMAM dendrimers on the DPPC monolayer. Therefore,
results obtained at room temperature cannot be directly applied to elucidate interactions at body temperature. Simulations at
body temperature found that all tested PAMAM dendrimers can easily penetrate the lipid monolayer during the monolayer
expansion process (mimicking “inhalation”), and the cationic PAMAM dendrimers (−NH2) show promising penetration ability
during the monolayer compression process (mimicking “expiration”). Larger PAMAM dendrimers (G5) adsorbed onto the lipid
monolayer tend to induce structural collapse and inhibit normal phase transitions of the lipid monolayer. These adverse effects
could be mitigated in the subsequent expansion−compression cycle. These findings suggest that the PAMAM dendrimer may
be used as a potential respiratory drug nanocarrier.

■ INTRODUCTION

In the past decades, nanoscale drug carriers have been widely
developed. However, delivery efficiencies for cancer nano-
medicines are still low.1−3 Systemic delivery of drugs to the
targeted organs is not easy. Hence, more attention has been
paid to respiratory drug delivery to treat lung diseases.4−6

Dendrimers, as one kind of popular nanoscale drug carriers, are
a class of polymeric nanoparticles with regularly successive
building blocks initiating from a central core molecule.7−10

The branched repeating building units are described by
generation (Figure 1a).11 Dendrimers have been extensively
investigated because of their unique properties and architec-
tures, such as deformable conformation, well-defined size, easy
surface modification, favorable water solubility, controllable
cytotoxicity, and polydispersity.12,13 However, it is still
unknown whether dendrimers are suitable for delivering
drugs via the respiratory pathway. In this work, we focus on

one of the most representative dendrimers: poly(amidoamine)
(PAMAM) dendrimers.14,15

To be an efficient and safe nanoscale respiratory drug carrier,
PAMAM dendrimers need to penetrate the biological barriers
in the lungs without significantly affecting their structures and
functions. The first biological barrier for respiratory drug
delivery is the pulmonary surfactant (PS). It is a film mainly
containing lipids and surfactant-associated proteins. The PS
film adsorbs onto the air−water interface of the alveoli. It plays
a vital role in reducing the surface tension of the lungs to
maintain the proper mechanics and to avoid alveolar
collapse.16,17 Dipalmitoylphosphatidylcholine (DPPC) is the
most abundant single component in natural PS. Hence, the
DPPC monolayer self-assembled at the air−water surface has
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been widely used as a PS model to understand the biophysical
role of PS films.18−21 The DPPC monolayer experiences phase
transitions between the liquid-expanded (LE) and the liquid-
condensed (LC) phases during compression and expansion
processes.16,22−25 Research shows that PAMAM dendrimers
can disrupt lipid bilayers.26−29 However, it is still unclear
whether inhaled PAMAM dendrimers have adverse impacts on
the function of PS films. Hence, we focused on interactions
between PAMAM dendrimers, as a model drug nanocarrier,
and the DPPC monolayer, as a model PS film.
Both in vitro experiments30−32 and molecular dynamics

(MD) simulations18,26,33−37 have been widely used to study
interactions between nanoparticles and the PS film. Many
efforts have been made to reveal the effects of rigid inorganic
nanoparticles on the PS film.26,34,35,38,39 In the current work,
we focused on interactions between the flexible PAMAM
dendrimer and DPPC monolayers using MD simulations and
Langmuir monolayer experiments. Our results indicated that
large PAMAM dendrimers induce membrane protrusions and
inhibit normal phase transitions of the interfacial lipids during
the monolayer compression process. These adverse effects of
PAMAM dendrimers on the DPPC monolayer could be greatly
reduced in the subsequent monolayer expansion process. All
PAMAM dendrimers could cross the DPPC monolayer rapidly
during the expansion process and small charged PAMAM
dendrimers successfully permeated into the aqueous phase
during the compression process. In other words, PAMAM
dendrimers can easily pass through the model PS without
significantly disrupting its structure and functions during the
compression−expansion cycles. In addition, we found that the
environmental temperature could dramatically change the
responses of the DPPC monolayer to PAMAM dendrimers,
which indicated that results at room temperature could not be
simply and directly used to elucidate the interaction
mechanism at body temperature.

■ MATERIALS AND METHODS
Materials. Hydroxyl (−OH)- or amino (−NH2)-modified G3 and

G5 PAMAM dendrimers were purchased from Dendritech Inc.
(Midland, MI). DPPC was purchased from Avanti Polar Lipids
(Alabaster, AL) and used without further purification. All solvents
used were high-performance liquid chromatography grade. The water
used was Milli-Q ultrapure water (Millipore, Billerica, MA), which has
a resistivity higher than 18 MΩ·cm at room temperature (20 ± 1 °C).
Langmuir Monolayer Experiments. Compression isotherms of

the DPPC monolayer were obtained with a Langmuir−Blodgett (LB)

trough (KSV Nima, Coventry, UK) at room temperature (20 ± 1
°C). The DPPC monolayer was prepared by uniformly spreading tiny
droplets of 1 mg/mL DPPC dissolved in chloroform throughout the
air−water surface using a 10 μL microsyringe. The system was left
undisturbed for 10 min to allow evaporation of the solvent.
Subsequently, PAMAM dendrimers were spread atop the DPPC
monolayer at a 1:1024 molar ratio and left for 10 min to allow
equilibrium. The film was compressed at a speed of 20 cm2/min and
the surface pressure−area (π−A) isotherm was recorded. Generally,
the whole compression process takes about 8 min.

For atomic force microscopy (AFM) imaging, the DPPC
monolayer at the air−water surface was transferred to a freshly
cleaved mica surface using the LB technique. Monolayers under
controlled surface pressures of 5 mN/m, that is, in the middle of the
phase transition plateau, were deposited onto the mica surface by
elevating the previously submerged mica vertically through the air−
water surface at a rate of 1 mm/min. Deposited monolayers were
scanned by AFM within 2 h of deposition. Topographical images were
obtained using an Innova AFM (Bruker, Santa Barbara, CA). Each
sample was characterized at multiple locations with various scan areas
to ensure the detection of representative structures. Both the contact
mode and tapping mode were used. The different scan modes gave
equivalent results. A silicon nitride cantilever with a spring constant of
0.12 N/m and a nominal tip radius of 2 nm was used in the contact
mode, and a silicon probe with a resonance frequency of 300 kHz and
a spring constant of 40 N/m was used in the tapping mode. Analysis
of the AFM images was performed using NanoScope software
(version 7.30).

MD Simulations. The coarse-grained (CG) MD simulation of
interactions between PAMAM dendrimers and DPPC monolayers
was employed using GROMACS simulation package40 with the
MARTINI 2.0 force field developed by Marrink et al.41,42 In general,
MARTINI model maps four heavy atoms into one interaction site.
For the aromatic group, it adopts the 2 or 3 to 1 mapping rule.
Standard parameters for DPPC, water, and salt ions (Na+, Cl−) were
used. As for the PAMAM dendrimer, MARTINI-compatible
parameters developed by Lee and Larson.,43,44 which well reproduced
the dynamical behaviors of PAMAM dendrimers interacting with the
lipid membrane, were used in this work. PAMAM dendrimers of two
different sizes (generation 3, G3; generation 5, G5) and two different
surface functional groups (−OH, neutral; −NH2, positively charged)
were studied (Figure 1b). As a result, G3 and G5 PAMAM
dendrimers have 122 and 506 CG beads in total, 32 and 128 surface
CG beads correspondingly. A bimonolayer system consisting of 2048
DPPC molecules and 58 240 CG water molecules as well as 150 mM
salt ions was used to study the interactions between PAMAM
dendrimers and the DPPC monolayer at the air−water surface. The
air phase was represented by vacuum, which was widely used in
current state-of-art MD simulations and able to reproduce the key
dynamics of the lipid monolayer at the air-water interface in the

Figure 1. (a) Schematic of the repeated branched structures for the PAMAM dendrimer using the generation 2 (G2) PAMAM dendrimer as an
example. Surface terminals are shown in green ellipse. (b) CG snapshots of all PAMAM dendrimers studied in this work. Charged surface terminals
are colored in red, while others in yellow.
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Langmuir experiments. The average area per lipid for the starting
configurations of the compression and expansion simulations were set
as 0.563 nm2 (fully LE phase) and 0.477 nm2 (fully LC phase),
respectively.35,38 Inhaled PAMAM dendrimers were modeled by
placing them in the air side near the tails of DPPC molecules. For all
simulations, periodic boundary conditions were applied in all three
dimensions. A standard 1.2 nm cutoff was applied for van der Waals
interactions, and L-J potential was shifted to zero smoothly from 0.9
to 1.2 nm to avoid cutoff noise. For Coulombic potential, a 1.2 nm
cutoff was used for short-range electrostatic interactions with shifting
to zero from 0 to 1.2 nm smoothly. The default value (15) of the force
field was used for the relative dielectric constant.41 Lipids, water, ions
and PAMAM dendrimers were coupled to 310 or 295 K using the
Berendsen thermostat45 with a relaxation time τ = 1 ps. The lateral
pressure was kept at 1 bar by semi-isotropic Berendsen pressure
coupling45 (coupling constant is 4 ps. Compressibility in the lateral
direction is 5 × 10−5 bar−1 and is zero in the normal direction). For
each system, the compression−expansion simulation was run for 800
ns with a time step of 20 fs. The neighbor list of nonbonded
interactions was updated every 10 steps. It is worth mentioning that it
is impossible to reach the time scale of 8 min (mentioned above) in
coarse-grained molecular dynamics (CGMD) simulations. Hence, we
use the popular bimonolayer system with the lateral pressure of 1 bar
to achieve affordable time scale (800 ns) in our simulations, which
well reproduced the basic changes of the structure and normal phase
transition of interfacial DPPC molecules during the compression−
expansion processes.34,35,38

Lipid Chain Order Parameter. Lipid chain order parameter (Sz)
was calculated using the formula

S
1
2

(3 cos 1)z n n,
2 θ= −

where θn is the angle between the vector connecting the n − 1 and n +
1 sites of the tail and bilayer normal z. Sz is averaged over the two
lipid chains and the entire bilayer to compare lipid chain order
parameters among different systems.

■ RESULTS AND DISCUSSION

Langmuir Monolayer Experiments and MD Simula-
tions Show Consistent Results at Room Temperature.
In order to validate our MARTINI CG model, we studied the
interactions between PAMAM dendrimers (Figure 1b) and
DPPC monolayers at the air−water interface using Langmuir
monolayer experiments at room temperature (T = 295 K).
Figure 2a shows AFM images and computational snapshots for
the final states of the DPPC monolayer under compressions.
G3-OH and G5-OH PAMAM dendrimers failed to cross the
DPPC monolayer during the compression process (Figure S1).
For the G3-OH PAMAM dendrimer, the lipid monolayer
shows no differences compared to the pure DPPC monolayer.
This is most likely because G3-OH is very small and easy to
embed itself into the hydrophobic region of the DPPC
monolayer. The G5-OH PAMAM dendrimer is much larger
than G3-OH, and hence stands on the terminals of the
hydrophobic lipid tails, thus forming a network standing out of
the DPPC monolayer. Both G3-NH2 and G5-NH2 PAMAM
dendrimers penetrate the aqueous phase (Figure S1). Thus,
there are no obvious differences between these two systems
and the pure DPPC monolayer as observed by AFM. In
general, our MD simulations are in good agreement with the
AFM observations.
The monolayer experiments show that PAMAM dendrimers

possess little effects on the surface pressure−area isotherm
profiles of the DPPC monolayer (Figure 2b). The phase
transition plateaus16 of interfacial lipid acyl chains overlap
intensely well (Figure 2b). It means that no PAMAM
dendrimers studied here significantly inhibit the normal
phase transition of the DPPC monolayer. This is consistent
with our CGMD simulations at room temperature (T = 295
K), which is indicative that PAMAM dendrimers do not affect
the time evolution of interfacial lipid chain order parameters
during the compression process (Figures 2c and S2). However,

Figure 2. Comparison of Langmuir monolayer experiments and MD simulations of PAMAM dendrimer−DPPC interactions at room temperature
(T = 295 K). (a) AFM images of the DPPC monolayer without and with various PAMAM dendrimers (upper panel) and MD simulations (lower-
panel, side-view). (b) Surface pressure−area isotherms of the DPPC monolayer without and with various PAMAM dendrimers obtained with the
Langmuir monolayer experiments. (c) Time evolution of interfacial lipid chain order parameters obtained with MD simulations.
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our previous CGMD simulations at body temperature
demonstrated that PAMAM dendrimers significantly disturb
the phase transitions of DPPC monolayers.34 Therefore,
comparison of these results indicates critical roles of the
environmental temperature in the interactions of PAMAM
dendrimers with the model PS membrane at the air−water
interface.
To further confirm the importance of environmental

temperature, we did a direct comparison between CGMD
simulations during the compression process at both room
temperature and body temperature. As shown in Figure 3,
PAMAM dendrimers have little effects on the time evolution of
total lateral surface area at room temperature (Figure 3a).

Combined the results mentioned above, we can conclude that
PAMAM dendrimers do not disturb the dynamics of interfacial
lipids during the compression process at room temperature.
However, when the environmental temperature is increased to
body temperature, time evolution of the total lateral surface
area for the pure DPPC monolayer system is dramatically
changed (Figure 3b). The responses of the DPPC monolayer
to different PAMAM dendrimers became much more sensitive
at elevated temperature. It means that results at room
temperature cannot be directly used to elucidate the
interaction mechanism between PAMAM dendrimers and
the lipid monolayer at body temperature.

Figure 3. Time evolution of the total interfacial surface in the interactions of PAMAM dendrimers and the DPPC monolayer at the air−water
interface during the compression process (a) at room temperature (T = 295 K) and (b) body temperature (T = 310 K).

Figure 4. (a) Time-varied changes of system conformations, (b) dendrimer-monolayer distances, and (c) interfacial lipid chain order parameters in
the interactions between PAMAM dendrimers and the DPPC monolayer at the air−water interface during the compression process at body
temperature (T = 310 K).
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Larger PAMAM Dendrimer Shows Adverse Effects on
the DPPC Monolayer during the Compression Process
at Body Temperature. Small hydrophilic nanocarriers were
reported to cross the lipid monolayer easily with little side
effects.35,38 As mentioned above, the PAMAM dendrimer is
hydrophilic, flexible, and has easy-modified surface terminals
and internal voids, which makes it probably suitable for
respiratory drug nanocarrier. Also, we considered these
PAMAM dendrimers with two different sizes (G3, G5) and
two different surface functional groups (−OH, neutral; −NH2,
positively charged) for cases of body temperature (Figure 1b).
PAMAM dendrimers (G3-OH, G3-NH2, G5-OH, and G5-
NH2) were placed in the “gas” phase near the DPPC
monolayer to model inhaled nanocarriers. The environmental
temperature was set to body temperature (310 K). Figure 4a
shows the structural changes of DPPC monolayers at the air−
water interface with/without the interactions of PAMAM
dendrimers during the compression process. Generally, small-
size PAMAM dendrimers (G3) have little effects on the
structure of the DPPC monolayer, while large-size PAMAM
dendrimers (G5) tend to induce the membrane protrusion
toward the aqueous phase (“fold” structure16). In the case of
membrane protrusions, G5 PAMAM dendrimers directly
interact with the “fold” structure rather than interfacial
DPPC molecules. Charged surface terminals (−NH2) can
significantly enhance the membrane penetration ability of
PAMAM dendrimers (Figure 4b). Within our simulation time,
G3-NH2 and G5-NH2 completely crossed the DPPC
monolayer and stayed at the lipid head-group region. The
preferred interaction of PAMAM dendrimers with the lipid
head-group in our monolayer system is mainly determined by
the electrostatic interactions, which is consistent with that in
the bilayer system.11,46 In addition, unlike the rigid nano-
particles,26,35 PAMAM dendrimers can minimize the resistance
force by dynamically adjusting an optimal shape during the
penetration process. In other words, the flexibility of PAMAM
dendrimers also contributes to its potent penetration ability.
We further monitored the time evolution of interfacial lipid
acyl chain order parameters. As shown in Figure 4c, G3
PAMAM dendrimers show little effects on the order parameter
evolution trend, while G5 PAMAM dendrimers can suppress
the increase of interfacial lipid acyl chain order parameters.
This is consistent with the size effects of PAMAM dendrimers
on the structural disruption of DPPC monolayers (Figure 4a).
Moreover, we further used the two-dimensional (2D) phase
map to describe the detailed information for the normal phase-
transition inhibition of the interfacial lipid acyl chains. As
shown in Figure 5, each 2D phase map contains both the
position of each interfacial lipid and its corresponding chain-
order parameter. From the whole time evolution process of the
2D phase maps, the normal phase transition (LE phase→ LE−
LC coexisting phase → LC phase) inhibition of the interfacial
lipid acyl chains during the compression process is confirmed.
On the one hand, combining the structural disruptions (Figure
4a) and phase behaviors (Figures 4c and 5) of DPPC
monolayers, we can conclude that PAMAM dendrimer-
induced membrane protrusions (“fold” structure) bring about
the inhibition of this normal phase transition. On the other
hand, for cases of large-size PAMAM dendrimers (G5), the
interfacial DPPC molecules are still keeping the LE phase
rather than the LC phase at the end of the compression
process, which will dramatically change the mechanics and
matter-exchange ability of the DPPC monolayer at the air−

water interface.16 This indicates the possible side effects of
large-size PAMAM dendrimers (G5) during the expiration
process.

PAMAM Dendrimers Can Efficiently and Safely Cross
the DPPC Monolayer during the Expansion Process at
Body Temperature. Because the entire breathing process
involves both the compression (expiration) and expansion
(inhalation) processes, we further investigated the effects of
PAMAM dendrimers on DPPC monolayers at the air−water
interface during the expansion process at body temperature.
Different from the compression process, all PAMAM
dendrimers could easily cross the DPPC monolayer without
inducing any membrane protrusion of the lipid monolayer
(Figure 6a). These interaction differences can be explained by
the differences in the gradually increasing area per lipid during
the expansion process and the gradually decreasing area per
lipid during the compression process.16,35 Besides, similar to
the compression process, charged PAMAM dendrimers (G3-
NH2, G5-NH2) have higher membrane penetration ability
(Figure 6b). They tend to immerse themselves absolutely in
the aqueous phase and directly interact with the lipid
phosphate head groups, while charge-neutral PAMAM
dendrimers (G3-OH, G5-OH) choose to embed themselves

Figure 5. Phase behaviors of the interfacial DPPC molecules in the
interactions of PAMAM dendrimers with the DPPC monolayer at the
air−water interface during the compression process at body
temperature (T = 310 K). Each point represents one DPPC molecule,
and its color shows the averaged chain order parameters.
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in the regions enriching lipid head groups and glycerol groups
(Figure 6a,b). In all cases, PAMAM dendrimers show no
effects on the normal phase transition of the interfacial lipid
acyl chains (Figures 6c and S3). In other words, side effects of
large-size PAMAM dendrimers during the compression
process could probably be minimized in the subsequent
expansion process.
During the expansion (inhalation) process, all PAMAM

dendrimers show no obvious effects on both the structure and
function of DPPC monolayers. Besides, PAMAM dendrimers
almost completely (charged PAMAM dendrimers) and half
(neutral PAMAM dendrimers) cross the DPPC monolayer at
the air−water interface (Figure 6b). We further probed the
possibility that neutral PAMAM dendrimers were squeezed out
completely into the aqueous phase without membrane
disruptions and the normal phase transition inhibition in the
subsequent compression process, which was validated by our
simulation results (Figure 7 and Scheme 1). Combining all the
interaction information between PAMAM dendrimers and

DPPC monolayers during both the compression and expansion
process, we could conclude that adverse effects of large-size
PAMAM dendrimers during the compression process might be
greatly reduced in the subsequent expansion−compression
cycle. In other words, the rapid penetration ability of inhaled
PAMAM dendrimers during the inhalation−expiration cycle
can greatly reduce their possible side effects during the
expiration process, which makes hydrophilic PAMAM
dendrimers suitable for respiratory drug carriers.

■ CONCLUSIONS

In this work, we performed a series of CGMD simulations as
well as Langmuir monolayer experiments to probe the
possibility of the PAMAM dendrimer as a respiratory drug
nanocarrier. We found that the environmental temperature
could dramatically affect the interactions of PAMAM
dendrimers with the model PS membrane. Hence, experiments
and simulations at room temperature could not be directly
used to elucidate the interactions between PAMAM

Figure 6. (a) Time-varied changes of system conformations, (b) interfacial lipid chain order parameters, and (c) dendrimer-monolayer distances in
the interactions between PAMAM dendrimers and the DPPC monolayer at the air−water interface during the expansion process at T = 310 K.

Figure 7. Time-varied conformation changes of system G3-OH and G5-OH during the compression process using the last frame of their expansion
simulations as shown in Figure 6a.
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dendrimers and the model PS membrane at body temperature.
CGMD simulations at body temperature found that PAMAM
dendrimers could easily cross the model PS membrane during
the expansion process, while large-size PAMAM dendrimers
might induce adverse effects during the compression process.
These adverse effects could be largely minimized and the
penetration ability of the PAMAM dendrimers might be
dramatically improved in the subsequent respiratory cycle. All
these results indicate that hydrophilic and flexible PAMAM
dendrimers manifest little effects on the first biological barrier,
that is, PS, in respiratory administration, and hence may be
used as a respiratory drug nanocarrier.
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