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Abstract: Identifying drug binding sites and elucidating drug action mechanisms are important compo-
nents in a drug discovery process. In this review, we briefly compared three different approaches (se-
quence-based methods, structure-based methods and probe-based molecular dynamics (MD) methods) 
to identifying drug binding sites, and concluded that probe-based MD methods are much more advanta-
geous in dealing with flexible target macromolecules and digging out druggable macromolecule con-
formations for subsequent drug screening. The applications of MD simulation to studying drug-target 
interactions were demonstrated with different types of target molecules, including lipid membrane, pro-
tein and DNA. The results indicate that MD simulations with enhanced sampling methods provide a 
powerful tool to determine free energy profiles/surfaces and identify important intermediate states, 
which are essential for the elucidation of drug action mechanisms. The future development of methods 
in MD simulations will benefit and speed up the drug discovery processes. 
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1. INTRODUCTION

In living organisms, proteins are versatile and flexible 
organic macromolecules, playing important roles in main-
taining various biological functions (ion channels, transport-
ers, enzymes, etc.). When a molecule binds to a specific site 
of the target protein, it may modulate protein dynamics and 
functions. Such specific sites are named as drug binding 
sites, and understanding the binding process is the basis of 
the structure-based drug design. Over a hundred years ago, 
Emil Fischer first formulated a lock-and-key model for drugs 
and protein, which offers a static point of view for drug-
protein interactions [1]. In this model, the binding process is 
driven by shape complementarity between the ligand and the 
fixed protein. However, since this model was proposed, 
more and more evidences have revealed that proteins exhibit 
remarkable conformational flexibility upon ligand binding, 
which makes this simple model inadequate to describe the 
association and dissociation processes of drugs. 
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Essentially, protein flexibility enables the exploitation of 
more possible high-affinity interactions. Proteins are dy-
namic entities and their conformations can be modulated by 
not only physiological factors such as temperature or pH, but 
also direct factors such as interactions with other entities 
(proteins, peptides, DNA, membrane, hormone molecules, 
etc.) [2-3]. The intrinsic flexibility of proteins may arise 
from the whole structure domain, or just side chains of a few 
amino acids, which results in large-scale movements through 
transition intermediates [4-5]. Hence, the energetic quantifi-
cation of the structure and dynamics of interest will be very 
important for the design and development of new drugs and 
also contribute to our knowledge of biological processes [6-
9]. 

It has been widely shown that protein flexibility can also 
affect drug’s binding kinetics and thermodynamics, which 
are of great importance and should be taken into account in 
structure-based drug design strategies [10-11]. Hence, under-
standing these structural changes related to the association 
and/or dissociation of drug molecules is crucial and can pro-
vide considerable insights for further optimization of drugs 
[12-13]. In addition to traditional approaches such as X-ray 
crystallography and nuclear magnetic resonance (NMR) 
spectroscopy, considerable efforts have been made to de-
velop new experimental methods to investigate the dynamics 
and flexibility of biomolecules. Although time-resolved 
studies using solution X-ray scattering or cryo-electron mi-
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croscopy (Cryo-EM) have been applied to investigate the 
dynamics of some flexible molecular systems, these methods 
still remain expensive and time-consuming. Besides, due to 
the complexity of biomolecules, it is difficult to directly 
measure the conformational changes in experiments for 
many biological systems of interest [14]. On the other hand, 
computational methods, in particular, the molecular dynam-
ics (MD) simulation, may provide an alternative way to 
study the protein dynamics, even for large biomolecular sys-
tems. Starting from an experimentally determined structure 
or from an in silico predicted model, classical MD (cMD) 
simulations can sample the confirmation states around the 
given structure. However, due to the presence of high ener-
getic barriers on the whole free energy surface of the system, 
cMD may fail to sample all states within limited simulation 
time. To improve the efficiency of conformational sampling, 
several enhanced MD sampling techniques have been devel-
oped. These new sampling approaches, combined with ad-
vanced computing hardware, allow the study of biological 
processes from the perspective of the structure, kinetics and 
thermodynamics in an appropriate biological environment 
[15-16].   

In this review, we first introduce the types of drug bind-
ing sites and then discuss the methods for drug binding site 
identification in detail.  The discussion is mainly focused on 
the applications of cMD and several widely used enhanced 
sampling methods including accelerated molecular dynamics 
(aMD) simulation, and Gaussian accelerated molecular dy-
namics (GaMD) simulation. The advantages and limitations 
of each MD method as well as their application examples are 
also summarized. Finally, the drug action mechanism and 
future prospective on the identification of drug binding sites 
are discussed. 

2. TYPES OF DRUG BINDING SITES 

The drug binding sites can be generally classified into 
three major types. The first type is called “active site” Fig. 
(1A), which includes catalytic sites or enzymatic binding 
sites [17]. These binding sites usually possess specific cata-
lytic functions, allowing it to interact with a substrate and 
execute chemical reactions, transforming the substrate into a 

new product. The second type comprises “allosteric site” 
Fig. (1B) [18-21], which do not induce any catalytic activity 
[22]. However, when a drug interacts with this site of a tar-
get protein, whose conformation can be changed to allow 
further interactions with other proteins. In other words, drugs 
can indirectly affect the activity of a target protein by inter-
acting with these sites. The third and the most complicated 
type of binding sites is usually termed as “cryptic site” Fig. 
(1C) [23]. The binding sites of this type are almost hidden 
and rarely can appear on the surface of the protein. They 
usually occupy a small portion of the conformational ensem-
ble of the target protein and are only partly detectable in the 
unbound target. Identifying cryptic sites may require a great 
deal of structural and conformational analysis of the protein. 

3. IDENTIFICATION METHODS OF DRUG BINDING 
SITES 

There are many computational methods available that can 
be used to identify drug binding sites. The methods are gen-
erally classified into the following three groups: sequence-
based, structure-based and probe-based methods, respec-
tively.  

3.1. Sequence-based Methods 

Sequence-based prediction methods operate under the as-
sumption that the protein residues involved in ligand binding 
are conserved through evolution [24-25]. With methods of 
this kind, the protein sequence is firstly scanned and con-
served residues are identified as potential binding sites. The 
fundamental limitation of sequence-based methods is that 
sequence conservation alone is not a specific criterion to 
identify binding residues, as many non-binding residues can 
have a high degree of conservation. The sequence-based 
methods also cannot account for the specific structural and 
physicochemical attributes of the binding sites. 

3.2. Structure-based Methods  

Historically, the estimation of the druggability and bind-
ing sites was solely based on prior data from known drugs 
and drug targets. Current structure-based methods have been 

 
Fig. (1). Three major types of binding sites: (A) active site, (B) allosteric site, which can change their conformation before (blue) and after 
(red) binding with allosteric modular (cyan), and (C) cryptic site, which can occasionally open (purple). 
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designed to overcome this shortcoming and allows to iden-
tify new drug binding sites of various sizes, shapes, and 
chemical characters without a prior knowledge of the drug 
binding target and with much higher accuracy. The basis of 
the structure-based methods, three-dimensional (3D) struc-
tural models of proteins, can be determined directly from 
experimental methods such as X-ray crystallography, NMR 
spectroscopy and Cryo-EM, or predicted by computational 
methods such as ab initio and homology modeling. The in-
creasing availability of structures from both experimental 
and computational methods have greatly advanced drug 
binding site identification. 

Structure-based methods can be further classified into 
template-based and pocket-based methods. Template-based 
methods as the name suggested rely on the construction of 
local structure motifs or patterns from a predefined portion 
of a structure or substructure that known to be able to define 
and characterize a functional site. Fuzzy Functional Forms 
[26] and PHUNCTIONER [27], are two examples of tem-
plate-based methods that use the evolutionary information 
among proteins to identify binding sites. On the other hand, 
pocket-based methods focus mainly on the 3D structures of 
the target proteins themselves rather than their evolutionary 
information. In most of these programs, a binding site is 
identified either as the largest pocket on the protein surface 
or a small cavity that a molecule or a molecular group can fit 
inside, which employ the geometrical identification methods 
or probes such as water or energetics metrics (e.g. hydro-
phobicity) [28-29]. Currently, most of the frequently used 
structure-based methods fall in this group. The representative 
packages are shown in Table 1. 

However, widely used classical structure-based method-
ologies have a common limitation: their accuracy depends on 
the rigidity of the binding site. However, binding sites can-
not always be approximated to be rigid since proteins may 
change their conformations in response to the ligand binding. 
In some cases, binding sites are visible only when a protein 
changes its conformation [46]. Hence, in case of the identifi-
cation of elusive cryptic sites, or allosteric sites, these 
aforementioned structure-based methods are inadequate. To 
offset this, methods such as MD simulations with normal 
mode analysis [47] to quantify the dynamics of the drug 
binding sites are rapidly being developed.  

3.3. Probe-based MD Methods 

The probe-based MD simulation method is a new way to 
detect drug binding sites by flooding the protein structure 
with different probes during MD simulations, which properly 
takes into account their flexibility. In this approach, the pro-
tein structure is soaked in the aqueous solution with different 
explicit solvents at certain concentrations, allowing these 
solvent molecules to diffuse and fully interact with hot spots 
on the protein surface. In this way, probe-based MD simula-
tions have two major advantages over the sequence-based or 
structure-based methods as described previously. First, 
probe-based MD simulations do not require a training set , so 
that the method can be applied to all types of protein struc-
tures without a prior knowledge about similar protein struc-
tures or potential binding sites [48]. Secondly, the most im-
portant feature of probe-based MD simulation is that it fully 

accommodates protein flexibility, solvent effects and many 
other parameters during simulations.  

The organic solvents used as probes can have different 
chemical properties and shapes, allowing the study of differ-
ent possible interactions with the protein and thus helping in 
predicting the maximum binding affinity for any identified 
binding site [49-52]. During a typical simulation, the differ-
ent solvent molecules are spontaneously distributed and con-
centrated around possible binding sites. The elapsed time for 
solvent molecules to occupy the binding site is directly re-
lated to its druggability [51]. In this context, the identified 
binding sites are ranked by the occupation time and the in-
crease in the local density of the interacting organic mole-
cules. The druggability is also assessed by the maximum 
binding affinity as predicted [51, 53]. 

Probe-based MD simulations were applied across a series 
of protein-protein interaction (PPI) targets to detect and 
characterize the interfaces where small molecules bind. The 
visual inspection of the probe-based MD maps for the pres-
ence or absence of hotspots provides valuable insights into 
the druggability of a PPI interface. In the work by Ghanakota 
et al. [54], several probes (acetonitrile, isopropanol, and 
pyrimidine) were used to capture a range of interactions such 
as hydrophilic/hydrophobic, hydrogen bonding, and aromatic 
interactions. Probe-based MD simulations for each protein 
were carried out with these three different probes separately. 
To set up the simulations, a layer of probe molecules was 
firstly placed around the surface of the protein, and then the 
whole system was solvated with water molecules. In these 
simulations, the ratio of probe molecules to all the solvent 
molecules was kept at 5%. PPI targets with the available 
ligand-bound crystal structures are selected for probe-based 
MD simulations based on the following two reasons: (1) the 
presence of small molecules binding at the interface con-
firms that it is possible for small molecules to bind with at 
least some amount of detectable affinity, thereby providing 
us with a dataset to assess if probe-based MD simulations 
can detect binding hotspots; (2) the ligand-bound crystal 
structure allows a direct comparison of the hotspot locations 
from probe-based MD with the ligands from crystal struc-
tures. Compared to a grid-based rigid receptor approach 
(SiteMap), probe-based MD simulation method has better 
performance in identifying the ligand binding hotspots Fig. 
(2). In addition to small probes mentioned above to capture 
the specific interactions, ligand molecules can also be used 
as probes to detect binding sites of the protein. For example, 
the ColDock method was recently proposed [55], which used 
multiple ligands as probes to quantify the most representa-
tive ligand poses in their MD simulations and further pre-
dicted the complex structure.   

Although probe-based MD method shows advantages in 
detecting drug binding sites, it also has its own limitations. 
For example, probe-based MD simulations seldom pick up 
the metal interaction sites as hotspots, which might be 
caused by the lack of proper probes or the accuracy of force 
fields in dealing with the interactions between probes and 
metal ions. Besides, sufficient sampling is always a key 
point for the accuracy of the drug binding site identification 
using probe-based MD simulations. The development in 
force fields and computer hardware will help overcome these 
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Table 1. Examples of available structure-based tools for drug binding site identification. 

Software Developer Year Website 

LIGSITE30 M. Hendlich 1997 none 

LigandFit31 C.M. Venkatachalam, et.al. 2003 none  

POCKET32 D. G. Levitt & L. J. Banaszak 1992 none 

VOIDOO33 G. Kleywegt &T. A Jones 1994 xray.bmc.uu.se/usf/voidoo.html 

PocketDepth34 Y. Kalidas & N. Chandra 2008 proline.physics.iisc.ernet.in/pocketdepth 

SURFNET35 R. Laskowski 1995 ebi.ac.uk/thornton-srv/software/SURFNET/ 

Cavity Search36 C. M. Ho & G. R. Marshall 1990 none 

APROPOS37 K. Peters 1996 csb.yale.edu/userguides/datamanip/apropos 

Sitemap38 Schrödinger, LLC 2009 schrodinger.com/sitemap 

bSiteFinder39 J. Gao, Q. Zhang et al. 2016 binfo.shmtu.edu.cn/bsitefinder/ 

POCASA40 J. Yu, et al. 2010 altair.sci.hokudai.ac.jp/g6/service/pocasa 

Q-SiteFinder41 A. T. R. Laurie & R. M. Jackson 2005 bioinformatics.leeds.ac.uk/qsitefinder 

LIGSITEcsc42 B. Huang &  M. Schroeder 2006 projects.biotec.tu-dresden.de/pocket/ 

FTMAP43 C. H. Ngan et al 2012 ftmap.bu.edu/param 

AlloFinder44 M. Huang 2018 mdl.shsmu.edu.cn/ALF/ 

GRAIL45 D. A Schuetz, T. Seidel, et al. 2018 none 

 

	  

Fig. (2). Comparison between the probe-based MD method (mixed-solvent molecular dynamic simulations, MSMD) and structure-based 
method (SiteMap). Hotspots are represented in white spheres and are in strong agreement with the location of small molecules in crystal 
structures. The small molecules disrupting the protein-protein interaction (PPI) interface are rendered in yellow sticks. All probe-based MD 
maps are contoured at 20σ (σ: the standard deviation of the grid). (A) Probe-based MD simulations detected strong hotspot activity on protein 
ZipA (PDB ID: 1Y2F) rather than SiteMap. (B) Both methods detect the PPI interface in MDM2 (PDB ID: 4JV7), while probe-based MD 
shows a more comprehensive coverage of the sub-pockets occupied by the ligand. The figures schematically indicate the binding sites based 
on the original results by Ghanakota et al. [54]. 
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limitations and promote the applications of probe-based MD 
simulations in identifying drug binding sites. 

3.4. Enhanced Sampling Method in Molecular Dynamics 
Simulations 

As mentioned above, sufficient sampling in configuration 
space is essential for probe-based MD simulations in detect-
ing drug binding sites. However, in many cases, the binding 
site of the target protein that is not obvious in a crystal struc-
ture, and it may take a very long simulation time for the 
binding site to expose to the probe molecules, making it dif-
ficult to access with conventional MD (cMD) simulations. 
This is mainly because the protein is trapped in a local 
minimum state and it is very difficult to cross the high en-
ergy barriers separating these minima [56]. In order to over-
come this shortcoming, one can extend the simulations to a 
longer time (much longer than hundreds of nanoseconds), 
which is not effective in most cases. An alternative is to in-
corporate enhanced sampling methods in the simulations. 
The enhanced sampling methods, such as accelerated mo-
lecular dynamics (aMD) [57], metadynamics [58-60], can 
provide much better sampling of the configuration space of 
the target protein, which is important to identify the hidden 
binding sites [61-63]. In this section, we focus on aMD and 
metadynamics as well as their applications in drug binding 
site identification. 
3.4.1. Accelerated Molecular Dynamics Method (aMD) 

aMD simulation [57] has attracted growing attentions in 
a series of MD simulation work. Compared to the cMD 
simulation, aMD can achieve much longer time scale with 
the same computing resources. The enhanced sampling ca-
pability of aMD is accomplished by elevating the energy 
minima in the potential energy landscape to reduce the tran-
sitional energy barriers that separate different states [64-65]. 
Therefore, aMD allows more sufficient sampling of confor-
mational spaces that are not readily accessible in a cMD sce-
nario. As mentioned above, this method modifies the poten-
tial energy landscape by raising energy wells that are below 
a certain threshold, while leaving those above this threshold 
unchanged. As a result, energy barriers separating adjacent 
energy basins are reduced, allowing the system to transit 
among different conformational states much easier, which is 
almost impossible in a cMD simulation. In the original form 
of aMD [64-65], when the system’s potential energy  
falls below the threshold energy, E, a boost potential  
is added. Hence, the modified potential, , can be ex-
pressed as: 

                 (1) 

When , ; otherwise,  

               (2) 

where α is a tuning parameter that determines the depth of 
the modified potential energy basin. 

It is worth mentioning that this approach multiplies each 
configuration by the strength of the bias ( ) to reweight the 

phase space of the modified potential. By doing so, aMD 
achieves the enhanced sampling of the conformational space 
while accurately converges to the correct canonical probabil-
ity distribution.  

Here, we take Bcl-xL protein as an example to demon-
strate the application of aMD in drug binding site identifica-
tion. The Bcl-2 family proteins play key roles in the initia-
tion of the apoptosis process and the regulation of pro-
grammed cell death by controlling the outer mitochondrial 
membrane integrity [66]. However, PPI interface is highly 
adaptable according to the comparative analysis of the Bcl-
x

L crystal structures, which means that the binding pocket 
may easily change its 3D configuration in response to the 
perturbations exerted by different binding partners. This high 
flexibility of Bcl-xL protein makes it inadequate to design 
drugs solely on the available crystal structures. Therefore, 
Guo et al. [66] performed extensive aMD simulations to in-
vestigate the conformational flexibility of the prototypical 
protein-protein interaction system Bcl-x

L
, whose effective 

timescales are equivalent to several-thousand folds of the 
previous cMD investigations of several nanoseconds. With 
aMD simulations, the conformational transitions between the 
apo and holo states resolved by crystallographic experiments 
were investigated. Combined with the variational implicit 
solvent model [67], the dynamic changes in the topological 
and physicochemical properties of the BH3 binding pocket 
on the surface of the Bcl-x

L
 protein were studied in a sys-

tematic manner. Associated with the highly flexible nature of 
the Bcl-x

L protein, the druggability of the binding pocket 
changes with the time. Besides, the conformations similar to 
the ligand binding states can be attained by simulating the 
apo protein system. The results showed that aMD can be 
applied to identify the more druggable conformations and 
effectively study them for proper drug design, contributing 
to the success of drug discovery. 

3.4.2. Gaussian Accelerated Molecular Dynamics Method 
(GaMD) 

As mentioned above, aMD has shown advantages in re-
vealing druggable conformations and details of drug binding 
sites. In the original aMD model, the boost potential  
(Equation 2) was introduced and the subsequent reweighting 
was integrated in the algorithm for correct convergences on 
the probability distribution. Hence, different kinds of new 

 have been proposed to further increase the efficiency 
of this method. Among them, Gaussian aMD has attracted 
lots of attentions [68-69]. This method has simplified the 
original  into a harmonic boost potential: 

, which can smooth the potential 

energy surface, reducing the energy barriers between energy 
minima. In the modified potential energy formulation,  is 
the parameter that determines the magnitude of the boost 
potential. Because the new boost potential follows a Gaus-
sian distribution, the original free energy profiles of bio-
molecules can be recovered through cumulant expansion to 
the second order for characterizing biomolecular dynamics, 
such as ligand binding and activation of G protein–coupled 
receptors.  
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3.4.3. Metadynamics 

Metadynamics is another powerful enhanced sampling 
approach in MD simulations, which promotes the quantifica-
tion of free energy surface as a function of several pre-
selected degrees of freedom or collective variables (CVs). 
[58-60] In a metadynamics simulation, a history-dependent 
biased potential is added to the system in the real space to 
accelerate the evolution of the system states.  The general 
idea of metadynamics is to enhance the system sampling by 
discouraging revisiting of sampled states. It is achieved by 
augmenting the system potential  with a bias potential 

. Similar to the Equation (1), the modified potential 
term  can be expressed as: 

                      (3) 

The bias potential  is a function of collective 
variables, which are relevant to particle positions. The bias 
potential is continuously updated by adding the bias with the 
rate . Then the biased potential can be written as: 

                          (4) 

Where the parameters  τ, ω, σ are determined a priori and 
kept constant during the simulation. The finite size of the 
kernel makes the bias potential to fluctuate around a mean 
value. A converged free energy can be obtained by averaging 
the bias potential.  

The metadynamics-based methods are especially useful 
for exploring the systems that do not require an initial esti-
mation of the energy landscape [70]. Taking the widely stud-
ied G-protein coupled receptors (GPCR) systems as an ex-
ample [71], the common and effective CV has been defined 
using the ideally placed and highly conserved residue Trp6.48 
as a reference point for ligand-GPCR distance measurement 
and the common orientation of GPCRs in the cell membrane. 
Using this single CV, a well-tempered multiple-walker 
metadynamics method [72] with a funnel-like boundary al-
lows an efficient exploration of the entire ligand-binding 
path from the extracellular medium to the orthosteric binding 
site. The protocol can be used with X-ray structures or high-
quality homology models for the receptor and is universally 
applicable to agonists, antagonists, partial and reverse ago-
nists. In a recent work, this protocol is also proved to be ef-
fective in finding the mixed agnostic and positive allosteric 
modulators of the cannabinoid CB1 receptor [73]. On the 
other hand, for complex systems, it is essential to find a 
proper CVs for the application of metadynamics-based 
methods. To meet this end, a series of methods such as es-
sential coordinates [74], Sketch-Map [75] and non-linear 
data-driven CVs [76] have been developed. Besides, inde-
pendent metadynamics simulations can be coupled together 
to improve usability and parallel performance. There are 
several metadynamics-based methods proposed in this case: 
the parallel tempering metadynamics [77], the bias-exchange 
metadynamics [78], and the collective-variable tempering 
metadynamics [79]. 

4. DRUG ACTION MECHANISM 

As discussed, MD simulations play important roles in 
identifying drug binding sites especially for those proteins 
with high flexibility. The detailed information of dynamic 
interaction processes provided by all-atom MD simulations 
can also shed light on the exact drug action mechanism at 
molecular levels. In order to conduct the drug-protein inter-
action simulations, one needs to parameterize drug mole-
cules, which are mainly proteins or small molecules. For the 
former, the general parameterization procedure for proteins 
is sufficient. For small molecules, common force field com-
patible parameterization toolsets have been well developed 
[80-82], which enables the direct investigations of the inter-
actions between drug molecules and target macromolecules. 
With the help of MD simulations, we can reveal the atomic-
level information of interactions between drug molecules 
and their targets. 

4.1. Drug-Membrane Interactions 

In order to regulate cellular activities, drug molecules 
will target the key components of cells such as proteins, 
DNAs, membranes, etc. Plasma membrane is the first bio-
logical barrier of a mammalian cell, and membrane proteins 
account for more than 60% of protein targets [83]. Drug 
molecules either interact with the membrane (or membrane 
proteins) directly or cross the membrane to access their tar-
get molecules. Thus, it is important to understand the drug-
membrane interactions for the elucidation of drug action 
mechanisms. MD simulations can provide detailed dynamic 
information for understanding drug-membrane interactions. 

 
Fig. (3). Chemical structures of three different ionized drugs: d-
sotalol, cisapride and moxifloxacin. 

For example, a recent MD work focused on interactions 
of the cardiac ion channel blocker drugs with model mem-
branes [84]. By combining cMD and umbrella sampling 
simulations, the authors showed the detailed partitioning 
dynamics and free energy profiles of different drugs Fig. (3) 
or the same drugs (d-sotalol) with different protonation 
states. Based on free energy profiles, the calculated drug 
permeability further revealed that only the neutral form of d-
sotalol accumulated in the membrane interior and could rela-
tively easily translocate across the lipid bilayer, which thus 
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was more relevant to the lipophilic channel access and also 
shared the similarity with other small molecule drugs [85] 
(e.g. aliphatic amines and carboxylic acids). Moreover, the 
water-membrane partitioning coefficient of this form calcu-
lated in all-atom MD simulations was very consistent with 
the experimental data [86], which validated the feasibility of 
all-atom MD simulations in studying drug-membrane inter-
actions at the atomic level. 

The protein dynamics can also be regulated by its sur-
rounding membrane environment. For example, Janosi et al. 
performed a series of MD simulations, systematically varied 
the properties of membrane domains and observed the corre-
sponding changes of the nanocluster stability of membrane-
bound Ras proteins [87-89]. MD simulations have revealed 
that the membrane domain stability could regulate the pre-
ferred membrane localization of transmembrane peptides 
[90], where the physicochemical properties of transmem-
brane peptides also played important roles in their membrane 
partitioning [91]. Different localization may result in differ-
ent clustering dynamics. In other words, membrane domains 
participate in the regulations of the protein dynamics and the 
subsequent protein-mediated signaling pathways [91]. 

4.2. Drug-Protein Interactions  

MD simulations can be used to study the dynamic bind-
ing processes of designed drugs on the target proteins and 
related regulation pathways. The time scales of these dy-
namic regulation processes are often beyond the grasp of 
conventional MD simulations, so enhanced sampling meth-
ods are utilized in this kind of studies. Hence, we will dis-
cuss how MD simulations help study the drug-protein inter-
actions. Recently, Miao et al. has applied GaMD simulations 
to probe the interactions of G-protein mimetic nanobody 

Nb9-8 or the agonist iperoxo (IXO) with the M2 receptor Fig. 
(4A) [92]. Starting from the X-ray structure of the agonist 
M2 receptor-nanobody complex [PDB ID: 4MQS], they first 
placed nanobody Nb9-8 and IXO at least 2nm away from the 
M2 receptor and then performed multiple 4.5µs GaMD simu-
lations. Although the calculated two-dimensional (2D) free 
energy surface was not well converged, GaMD simulations 
did reproduce the experimental binding modes with a mini-
mum RMSD of 2.48 Å compared with the complex crystal 
structures, where nanobody Nb9-8 and IXO preferred the 
intracellular and extracellular regions of the M2 receptor cor-
respondingly. Moreover, their simulations revealed impor-
tant low-energy intermediate states for the nanobody-
receptor binding and provided possible conformation-
regulating pathways for the M2 receptor after the binding of 
the nanobody Nb9-8.  

As discussed, the protein conformational changes (e.g. 
“open”, “intermediate”, “close” states) are critical to their 
activation/deactivation regulations. Besides, protein orienta-
tion relative to membrane also affects their biological func-
tions. For example, the orientation of RAS proteins may af-
fect the binding of the protein with their downstream effector 
proteins [93] and the formation of the protein clustering [94]. 
MD simulation is a powerful tool to quantify the distribution 
of preferred membrane orientations [95-96]. The insights 
from MD simulations indicated that the regulation of pro-
tein-membrane orientations may be another drug action 
mechanism. Ryckbosch et al. performed all-atom MD simu-
lations (400-500µs) focusing on the impacts of bryostatin (a 
compound in clinical trials for Alzheimer’s disease) on 
membrane-bound protein kinase C. [97]. They found that 
bryostatin’s unique activity is correlated to the distinctive 
orientation of bryostatin-kinase complex.  

 
Fig. (4). (A) The snapshot of the interactions between the nanobody Nb9-8 and M2 receptor with the agonist IXO (PDB ID: 4MQS); (B) 
Two binding modes of the anticancer alkaloid berberine on the surface of G4-DNA (PDB ID: 3R6R). 
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4.3. Drug-DNA Interactions 

DNA is a molecule composed of two nucleotide chains 
which coil around each other to form a double helix carrying 
the genetic instructions used in the growth, development, 
functioning and reproduction of the living organisms. Given 
its significance, DNA has always been another important 
drug target almost all the available MD force fields have 
systematic parameterizations for DNA molecules, which 
make it possible to investigate the DNA dynamics using MD 
simulations. However, most biological processes related to 
DNA molecules occur at large time scales. Hence, MD simu-
lations with enhanced sampling methods are necessary to 
study Drug-DNA interactions. Here, we will take the G-
quadruplexes (G4s) as an example to discuss the usefulness 
of MD simulations to drug-G4 interactions. 

As a higher-order DNA structure, G4-DNA usually exits 
in promoter regions of genes and telomeres, which regulates 
several important cellular functions including gene transcrip-
tion and mitotic clock. Therefore, many compounds includ-
ing the anticancer alkaloid berberine have been proposed as 
G4-DNA binders. Using a recently developed enhanced 
sampling method (funnel-metadynamics) [98], Moraca et al. 
successfully revealed the binding mechanism of berberine 
onto human G4-DNA with all-atom MD simulations Fig. 
(4B) [99]. Funnel-metadynamics is a method which greatly 
enhances the sampling of the ligand binding process while 
reduces the over-exploration of the unbound state. Starting 
from the crystal structure of the berberine-G4-DNA complex 
(PDB ID: 3R6R), 0.8µs funnel-metadynamics simulations 
help capture the transition between different binding modes 
of berberine on G4-DNA. The obtained well-characterized 
free-energy landscape identified the most preferred ligand 
binding modes (a parallel orientation at the -end), a less 
preferred ligand binding modes (an antiparallel orientation at 
the -end) and their corresponding higher energy pre-
binding states, which were critical to understand the overall 
binding dynamics. Further steady-state fluorescence experi-
ments validated the results in the simulations. This indicates 
the feasibility of MD simulations to help elucidate the drug-
DNA binding mechanisms. 

CONCLUSIONS 

In this review, we focus on the applications of MD simu-
lations in the identifications of drug binding sites and action 
mechanisms. Generally, drug binding site identification 
methods can be classified into three categories: sequence-
based method, classical structure-based method and probe-
based MD method. In the sequence-based method, the con-
served sequence may be not sufficient to predict drug bind-
ing sites. Although the structure-based method is much more 
reasonable, it fails to capture the flexibility of target macro-
molecules. To overcome this shortcoming, MD simulations 
may provide a suitable way to deal with the flexibility of 
target macromolecules. By performing MD simulations with 
enhanced sampling methods, more druggable conformations 
of target macromolecules and possible drug binding sites can 
be identified using standard probes of different physio-
chemical properties. The enhanced sampling MD simulation 
also provides a way to estimate the overall free energy pro-
files/surfaces that can be used to identify low-energy inter-

mediate/minimum states and dynamic pathways for the drug 
binding, and thus helps elucidate drug action mechanisms. 

Although MD simulations show great promises in the 
identifications of drug binding sites and action mechanism, 
sufficient sampling is always essential to achieve a solid 
conclusion. In the future, the continued development of more 
efficient enhanced sampling algorithms and higher comput-
ing ability will be important to promote broader applications 
of MD simulations in drug discovery. In addition, a series of 
current enhanced sampling methods still depend on prede-
fined collective variables, which may limit the application of 
the methods and bring bias to the results. Hence, developing 
algorithms for unbiased efficient sampling could be a re-
search focus in the future. 
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